[LeetCode] 155. Min Stack

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • getMin() -- Retrieve the minimum element in the stack.
Example:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.

Thought process:
The difficulty of this problem is figuring out how to track the minimums. The idea is to use two stacks.
  1. Stack 1 is the main data structure.
  2. Stack 2 keeps track of the minimum and all previous minimums.
If the number popped from stack 1 is the current minimum, pop the number from stack 2 as well. Therefore, if a number pushed equals the current minimum, it should also be pushed onto stack 2.

Solution:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class MinStack {
    private Stack<Integer> stack;
    private Stack<Integer> minimums;

    /** initialize your data structure here. */
    public MinStack() {
        stack = new Stack<>();
        minimums = new Stack<>();
    }
    
    public void push(int x) {
        if (stack.isEmpty() || x <= minimums.peek()) {
            minimums.push(x);
        }
        stack.push(x);
    }
    
    public void pop() {
        if (!stack.isEmpty()) {
            int popped = stack.pop();
            if (popped == minimums.peek()) {
                minimums.pop();
            }
        }
    }
    
    public int top() {
        if (!stack.isEmpty()) {
            return stack.peek();
        } else {
            return -1;
        }
    }
    
    public int getMin() {
        if (!stack.isEmpty()) {
            return minimums.peek();
        } else {
            return -1;
        }
    }
}

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(x);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */

Time complexity:
All methods are O(1). This is achieved by spending extra space.

Comments

Popular posts from this blog

[LeetCode] 714. Best Time to Buy and Sell Stock with Transaction Fee

[LeetCode] 269. Alien Dictionary

[LeetCode] 631. Design Excel Sum Formula