[LeetCode] 261. Graph Valid Tree

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0]and thus will not appear together in edges.

Thought process:
A tree is a graph that doesn't have a cycle.
BFS. When a node is polled from queue, iterate through its neighbors. If any of them is visited but not the node's parent, there is a cycle.
  1. If there are no edges, then the graph is a tree only if it has only one node.
  2. Build graph. Use a map of int -> list of int. Iterate through the edge list and add nodes into map.
  3. BFS. Poll a node from queue. Iterate through its neighbors. If queue contains a neighbor, that means there is a cycle in the graph. Return false. Otherwise, if the neighbor is not visited, offer it to queue.

Solution 1 (BFS):
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class Solution {
    public boolean validTree(int n, int[][] edges) {
        if (edges.length == 0) {
            return n == 1;
        }
        
        Map<Integer, List<Integer>> graph = new HashMap<>();
        for (int[] edge : edges) {
            List<Integer> neighbors1 = graph.getOrDefault(edge[0], new ArrayList<>());
            List<Integer> neighbors2 = graph.getOrDefault(edge[1], new ArrayList<>());
            neighbors1.add(edge[1]);
            neighbors2.add(edge[0]);
            graph.put(edge[0], neighbors1);
            graph.put(edge[1], neighbors2);
        }
        
        Queue<Integer> queue = new LinkedList<>();
        Set<Integer> visited = new HashSet<>();
        queue.offer(edges[0][0]);
        visited.add(edges[0][0]);
        int nodes = 0;
        
        while (!queue.isEmpty()) {
            int node = queue.poll();
            nodes++;
            
            for (int neighbor : graph.get(node)) {
                if (queue.contains(neighbor)) {
                    return false;
                }
                if (!visited.contains(neighbor)) {
                    queue.offer(neighbor);
                    visited.add(neighbor);
                }
            }
        }
        return nodes == n;
    }
}

Time complexity:
Building graph takes O(E). BFS takes O(V + VE) = O(VE) because queue.contains() is not constant time. So the overall time complexity is O(VE).

Solution 2 (DFS):
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public class Solution {
    public boolean validTree(int n, int[][] edges) {
        if (edges.length == 0) {
            return n == 1;
        }
        if (n != edges.length + 1) {
            return false;
        }
        
        Map<Integer, Set<Integer>> graph = new HashMap<>();
        for (int i = 0; i < n; i++) {
            graph.put(i, new HashSet<>());
        }
        for (int[] edge : edges) {
            graph.get(edge[0]).add(edge[1]);
            graph.get(edge[1]).add(edge[0]);
        }
        
        Set<Integer> visited = new HashSet<>();
        if (hasCycle(0, -1, graph, visited)) {
            return false;
        }
        return visited.size() == n;
    }
    
    private boolean hasCycle(int node, int parent, Map<Integer, Set<Integer>> graph, Set<Integer> visited) {
        visited.add(node);
        for (int neighbor : graph.get(node)) {
            if (neighbor != parent && visited.contains(neighbor)) {
                return true;
            }
            if (!visited.contains(neighbor) && hasCycle(neighbor, node, graph, visited)) {
                return true;
            }
        }
        return false;
    }
}

Time complexity: O(V + E).

Solution 3 (Union find):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Solution {
    private int[] parent;
    private int[] size;
    
    public boolean validTree(int n, int[][] edges) {
        parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
        size = new int[n];
        Arrays.fill(size, 1);
        
        for (int[] edge : edges) {
            if (!union(edge[0], edge[1])) {
                return false;
            }
        }
        return edges.length == n - 1;
    }
    
    private boolean union(int v1, int v2) {
        int p1 = find(v1);
        int p2 = find(v2);
        
        if (p1 == p2) {
            return false;
        }
        if (size[p1] < size[p2]) {
            parent[p1] = p2;
            size[p2]++;
        } else {
            parent[p2] = p1;
            size[p1]++;
        }
        return true;
    }
    
    private int find(int v) {
        while (v != parent[v]) {
            parent[v] = find(parent[parent[v]]);
            v = parent[v];
        }
        return v;
    }
}

Time complexity: O(E).

Comments

  1. 1. no need to count nodes, you can just check graph.size() == n after assembling it :3
    2. optimization: graph.computeIfAbsent(edge[0], k -> new ArrayList<>()).add(edge[1]) saves you a couple of hash lookups and irrelevant object allocations

    solution #3 is neat! <3

    ReplyDelete

Post a Comment

Popular posts from this blog

[LeetCode] 631. Design Excel Sum Formula

[LeetCode] 269. Alien Dictionary

[LeetCode] 714. Best Time to Buy and Sell Stock with Transaction Fee