[LeetCode] 393. UTF-8 Validation
A character in UTF8 can be from 1 to 4 bytes long, subjected to the following rules:
- For 1-byte character, the first bit is a 0, followed by its unicode code.
- For n-bytes character, the first n-bits are all one's, the n+1 bit is 0, followed by n-1 bytes with most significant 2 bits being 10.
This is how the UTF-8 encoding would work:
Char. number range | UTF-8 octet sequence
(hexadecimal) | (binary)
--------------------+---------------------------------------------
0000 0000-0000 007F | 0xxxxxxx
0000 0080-0000 07FF | 110xxxxx 10xxxxxx
0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
Given an array of integers representing the data, return whether it is a valid utf-8 encoding.
Note:
The input is an array of integers. Only the least significant 8 bits of each integer is used to store the data. This means each integer represents only 1 byte of data.
The input is an array of integers. Only the least significant 8 bits of each integer is used to store the data. This means each integer represents only 1 byte of data.
Example 1:
data = [197, 130, 1], which represents the octet sequence: 11000101 10000010 00000001. Return true. It is a valid utf-8 encoding for a 2-bytes character followed by a 1-byte character.
Example 2:
data = [235, 140, 4], which represented the octet sequence: 11101011 10001100 00000100. Return false. The first 3 bits are all one's and the 4th bit is 0 means it is a 3-bytes character. The next byte is a continuation byte which starts with 10 and that's correct. But the second continuation byte does not start with 10, so it is invalid.
Thought process:
Use right shift.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | class Solution { public boolean validUtf8(int[] data) { int count = 0; for (int i : data) { if (count == 0) { if (i >> 3 == 0b11110) { count = 3; } else if (i >> 4 == 0b1110) { count = 2; } else if (i >> 5 == 0b110) { count = 1; } else if (i >> 7 == 1) { return false; } } else { if (i >> 6 != 0b10) { return false; } count--; } } return count == 0; } } |
Time complexity: O(n).
Comments
Post a Comment